4th Workshop on Dust, Atmosphere, and Plasma Environment of the Moon and Small Bodies

University of Colorado Boulder, CO June 5-7, 2023

Electron Yield Measurements of Bulk Lunar Simulants

JR Dennison, Matthew Robertson, Heather Allen, and Thomas Keaton

Materials Physics Group Physics Department Utah State University Logan, Utah USA

Dust Charging Effects

- Localized and global dust lofting activity
- Engineering requirements for Lunar surface, instrumentation and equipment operations
- Surface removal methods for gear, habitat, optical, and mechanical surfaces
- Dust shields/barriers in Lunar bases
- Prototyping aerosol coatings for instrumentation and spacecraft development
- Habitat air filtration
- Astronaut health effects
- Water-regolith separation
- Better understanding of insulative grains used in instrumentation
- Planetary formation, interstellar dust aggregation and other charged-induced dust processes
- Dust induced charge transport magnitudes and approximations

Launch of Spacehab, 1993 - Credit: NASA

Lunar Rover Vehicle on Apollo 15, 1971 - Credit: NASA

Relevance of Electron Yields to Dust Charging Effects

Levitation • • • •

Charge Repulsion of Like Charges

Dust Agglomeration

Alignment of Dipole Charges

Charge Attraction of Opposite (or Mirror) Charges

Modified Trajectories

Charge Deflection

IncidentinEdicateratrElectron

DAP-2023

Yield Definitions

Yield curves of conducting HOPG graphite

Charging Effects

Things Affecting EY

Roughness and Porosity

(e) Multilayer Angular Particles

Incident Energy* **Incident Species** Target Material Charge* Conductivity* Contamination* Coatings Roughness* Porosity* *Can change due to Environment Effects

Charging

Review of Previous Lunar Dust EY Studies

— Dukes Dat and Fit: Apollo 16, sub-mature, Lunar Highland Soil 61241 Gold's First Crossover Range for Various Lunar Samples

Anderegg, M., 1972; Gold, T., 1979; Meyer C., 2010

There are additional studies of beam-induced charging of individual grains: Abbas, 2010 and Horanyi, 1998

Hemispherical Grid Retarding Field Analyzer Electron Emission Detector

EY Instrumentation

- $_{\odot}$ 10 eV to 80 keV incident electrons
- fully enclosed HGRFA for emission electron energy discrimination.
- Precision absolute yield by measuring all currents
 - $_{\odot}$ ~1-2% accuracy with conductors
 - ~2-5% accuracy with insulators
- o in situ absolute calibration
- \circ multiple sample stage
- •~40 K < T < 400 K
- reduced S/N

Enhanced Low Fluence Methods for Insulator Yields

- \circ low current (<1 nA-mm^-2), pulses (<4 μs) with <1000 e^-mm^-2
- Point-wise yield method charge with
 <30 e⁻-mm⁻² per effective pulse
- neutralization with low energy (~6 eV)
 e⁻ and UV and VUV and thermal dissipation
- *in situ* surface voltage probe

Granular Sample Preparation Methods

- 1. Prepared a conducting substrate* mounted on a stainless steel 14 mm diameter disc (Fig.1)
- 2. Placed disc underneath sieves
- Fractions of the LHS-1[#] particle size distribution selected with sieves are deposited randomly on the adhesive substrate discs (Fig. 2)
- 4. Blew off loose dust between each level
- LHS-1 Sample 2: All particles on substrate are placed randomly via sieves
- LHS-1 Sample 1: Manually place largest sized particles >100 um in a grid pattern on substrate

Ted Pella SEM graphitic carbon mounting tape with adhesive and AI core
 Exolith Labs Lunar Highland Simulant (LHS-1)

Coverages of Single Layer Al₂O₃ Grains

Secondary Electron Yield (SEY) Fits

SEY = TEY - BSEY

- E_{max} increases linearly from C to rough Al₂O₃ values
- δ_{max} depressed at intermediate coverages when E_{max} for a polished C and Al₂O₃ contributions are **both**₂**present** 13

6/5/2023

Comparison of Different Alumina Types

- Surface roughness greatly supresses δ_{max} , here by >9X
- Does not significantly affect *E_{max}*, *n* or *m*
- BSEY largely unaffected by roughness

Al ₂ O ₃ Materials	δ _{max}	E ₁ (eV)	E ₂ (eV)
Polished Diamonite	18	19	15000
Coorstech Alumina	10	36	9500
Unpolished Diamonite	4.2	47	5700
67 μm Al ₂ O ₃ Dust	2.1	150	3000

Alumina and Lunar Simulant vs Lunar Dust Data

USU Data:

- Alumina dust and Lunar Simulant are similar, with much higher yields than previous lunar dust studies
- $(\delta_{max}$ -1) ~4X Willis and >20X Dukes and Gold
- Do not exhibit charging below E₁ and above E₂
- *E*₁ largely consistent among all studies
- *E*₂ increases 3X Willis and 10X
 Dukes
- *E_{max}* increases >2X Willis and >5X
 Dukes
- USU results predict much more + and – charging, with + charging over much broader energy range
- USU data is not for lunar dust (yet)!
- Green and purple dashed regions roughly illustrate the extent of charging for the Dukes and Willis studies

LHS-1 Lunar Simulant—Sample 1

Bulk Chemistry Relative abundances. Measured by XRF.

Oxide	Wt.%	
SiO2	51.2	
TiO ₂	0.6	
Al ₂ O ₃	26.6	
FeO	2.7	
MnO	0.1	
MgO	1.6	
CaO	12.8	
Na ₂ O	2.9	
K ₂ O	0.5	
P202	0.1	
LOI*	0.4	
Total**	99.4	

* Loss on ignition ** Excluding volatiles and trace elements

LHS-1 Sample 1

Gold Lunar Dust Sample:		Gold Lunar	Gold Lunar Dust Sample:	
10084 [Apollo 11]		15005 [15005 [Apollo 15]	
% Weight	Compound	% Weight	Compound	
43	SiO2	N/A	SiO2	
16	FeO	N/A	Al2O3	
13	Al2O3	N/A	Other	
~28	Other			
Gold Lunar Dust Sample:		Gold Lunar Dust Sample:		
60009	[Apollo 16]	61500 [Apollo 16]		
% Weight	Compound	% Weight	Compound	
46.4	SiO2	44.66	SiO2	
27.8	Al2O3	26.5	Al2O3	
16.2	CaO	15.33	CaO	
		~13.51	Other	
Willis Lunar Dust Sample:		Dukes Lunar Dust Sample:		
14259,116		61241		
% Weight	Compound	% Weight	Compound	
46.94	SiO2	45.32	SiO2	
17.31	Al2O3	27.15	Al2O3	
11.06	CaO	15.69	CaO	
~23.684	Other	~12.57	Other	
LHS-1 Dust				
	% Weight	Compound		
	51.2	SiO2		
	26.6	AI2O3		
	12.8	CaO		
	~8.9	Other		

Anderegg, M., 1972; Gold, T., 1979; Meyer C., 2010 Dukes, C., 2013;

Lunar Simulant Yield Data

- Comparison of EY curves for two LHS-1 samples, both measured twice.
- Sample 1 has more particulates >100 μm
- TEY/SEY/BSEY all agree within small uncertainties.

Single fits are shown δ _{max} = 1.58 ± 0.3 n = 1.264 ± 0.07 E ^σ ₁ = 100 ± 10 eV	for TEY and BSEY: $E^{\delta}_{max} = 540 \pm 40 \text{ eV}$ m = 0.515 ± 0.05 $E^{\sigma}_{2} = 2250 \pm 200 \text{ eV}$			
η _{peak} = 0.12 ± 0.3	E _{peak} = 250 ± 50 eV			
<mark>η₀ = 0.08 ± 0.2</mark>				
Lunar Simulant TEY				

Lunar Simulant Yield Decay Curve

Yield Decay Curve show the evolution of TEY with successive charge pulses without intervening charge dissipation

Plot shows 100 pulse sequence with ~3.6 pC/mm² (~2·10⁷ e⁻ / mm²)

Charge density per pulse:

- USU: ~40 fC/mm²-pulse (~3·10⁵ e⁻ / mm²)
- *Willis: >1 μA continuous beam
- *Gold: >1 μA continuous beam
- *Dukes: >10 μC/mm²-pulse (~30MX USU)
- * No charge dissipation between pulses

Key Takeaways

- EY dust data are critical for myriad theory, simulations and engineering applications for lunar surface activities
- Previous EY measurements were significantly affected by charging, layering, angularity, roughness and porosity
- USU granular sample preparation methods developed and validated
- Accurate and precise EY data for highly-insulating, angular, rough, porous, homogeneous Al₂O₃ granular and inhomogeneous LHS-1 lunar simulant samples at USU
- TEY/BSEY/SEY results consistent with models for materials, roughness, and coverage
- Need to extend studies to include:
 - More homogeneous SiO₂ and Al₂O₃ granular data for additional particle sizes, shapes, and coverages
 - Multilayer porous dust samples
 - Other types of simulants
- Clearly demonstrates we are able to acquire high quality electron yield and charge decay curves of lunar dust samples

Research was supported through a Utah NASA Space Grant Consortium Graduate Fellowship (Robertson), USU Physics Department Blood Graduate Fellowships, (Keaton and Robertson), and a USU Peak Undergraduate Research Fellowship Allen).

Special thanks to USU project contributors: Chris Vega, Anh Phan, Tammy Rittenour, Joshua Boman

