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Dust Charging Effects

Launch of Spacehab, 1993 - Credit: NASA

Lunar Rover Vehicle on Apollo 15, 1971 - Credit: NASA

• Localized and global dust lofting activity
• Engineering requirements for Lunar surface, 

instrumentation and equipment operations
• Surface removal methods for gear, habitat, optical, and 

mechanical surfaces
• Dust shields/barriers in Lunar bases
• Prototyping aerosol coatings for instrumentation and 

spacecraft development
• Habitat air filtration
• Astronaut health effects
• Water-regolith separation
• Better understanding of insulative grains used in 

instrumentation
• Planetary formation, interstellar dust aggregation and other 

charged-induced dust processes
• Dust induced charge transport magnitudes and 

approximations
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Relevance of Electron Yields to Dust Charging Effects

Charge Repulsion of Like Charges
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Alignment of Dipole Charges

Dust Agglomeration
Charge A7rac9on of Opposite (or Mirror) Charges

Electrostatic Adhesion

Charge Deflection

Modified Trajectories
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Electron Yields for Insulators

Sample

Substrate

Incident ElectronIncident Electron

Displacement Current
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Yield Definitions
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Electron Yield ≡ # of e−out
# of e− in  

TEY ≡ 𝛔 ≡ Total yield of all emiEed e−
 

BSEY ≡ 𝛈 ≡ BackscaEered yield of e− 

reflected from sample surface

SEY ≡ δ ≡ 𝛔 − 𝛈 ≡ Secondary yield of 

emiEed e−	from inside of sample 

Energies & Yields 
Neutral e− yield: δ1 E1  = δ2 E2  ≡ 1 

E1 ≡ First crossover energy

E2 ≡ Second crossover energy

Maximum e− yield: δmax 

Emax ≡	e−	energy at δmax Emax  

E1 E2

Emax

δmax

Yield curves of conducting HOPG graphite

Linear Plot Log-log Plot



Positive charging 
suppresses TEY>1 through 
reattraction of low energy 

SEY to positive surface

Negative charging suppresses 
TEY<1 through repulsion of 
incident electrons from 
negative surface

Charging Effects
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Things Affecting EY
Contamination and Layers

Surface MorphologyCharging

Roughness and Porosity

Incident Energy* Incident Angle
Incident Species Target Material
Charge*   Conductivity*
Coatings   Contamination*
Roughness*  Porosity*          .    
*Can change due to Environment Effects
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Review of Previous Lunar Dust EY Studies

References
Anderegg, M., 1972; 
Gold, T., 1979; Meyer C., 2010
Dukes, C., 2013 

1.5

There are additional studies of 
beam-induced charging of 
individual grains: Abbas, 2010 
and Horanyi, 1998
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•     Peak Yield Points [ Em , δmax(Em) ]
- - - - Charging Limit



EY Instrumentation

o 10 eV to 80 keV incident electrons
o  fully enclosed HGRFA for emission  
    electron energy discrimination.
o  Precision absolute yield by measuring        
    all currents

o ~1-2% accuracy with conductors
o ~2-5% accuracy with insulators

o in situ absolute calibration
o multiple sample stage
• ~40 K < T < 400 K
• reduced S/N

Collector

Bias Grid

Inner Grid

Sample

e- flood gun UV flood LED

Hemispherical Grid Retarding Field Analyzer Electron Emission Detector

Enhanced Low Fluence Methods 
for Insulator Yields

o  low current (<1 nA-mm-2), pulses (<4 
μs) with <1000 e--mm-2

o Point-wise yield method charge with 
<30 e--mm-2 per effective pulse

o neutralization with low energy (~6 eV) 
e- and UV and VUV and thermal 
dissipation

o in situ surface voltage probe
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Granular Sample Preparation Methods
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• LHS-1 Sample 2: All particles on 
substrate are placed randomly 
via sieves

• LHS-1 Sample 1: Manually place 
largest sized particles >100 um in 
a grid pattern on substrate

1. Prepared a conducting substrate* mounted on a 
stainless steel 14 mm diameter disc (Fig.1)

2. Placed disc underneath sieves 
3. Fractions of the LHS-1# particle size distribution 

selected with sieves are deposited randomly on the 
adhesive substrate discs (Fig. 2)

4. Blew off loose dust between each level

1)

2)

*  Ted Pella SEM graphitic carbon mounting tape with adhesive and Al core
#  Exolith Labs Lunar Highland Simulant (LHS-1)



Coverages of Single Layer Al2O3 Grains
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Secondary Electron Yield (SEY) Fits
SEY = TEY − BSEY

• Emax increases linearly from C to rough Al2O3 values
• δmax depressed at intermediate coverages when 

Emax for a polished C and Al2O3 contributions are 
both present 6/5/2023DAP-2023 13



Comparison of Different Alumina Types
• Surface roughness greatly supresses 

δmax , here by >9X

• Does not significantly affect Emax, n or m

• BSEY largely unaffected by roughness 
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Emax = 702 eV

Energy (eV)



Alumina and Lunar Simulant vs Lunar Dust Data
USU Data:
• Alumina dust and Lunar Simulant 

are similar, with much higher yields 
than previous lunar dust studies

• (δmax-1) ~4X Willis and >20X Dukes 
and Gold

• Do not exhibit charging below E1 
and above E2

• E1 largely consistent among all 
studies

• E2 increases 3X Willis and 10X 
Dukes

• Emax increases >2X Willis and >5X 
Dukes

• USU results predict much more + 
and – charging, with + charging 
over much broader energy range

• USU data is not for lunar dust (yet)!
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• Green and purple dashed regions 
roughly illustrate the extent of 
charging for the Dukes and Willis 
studies 



LHS-1 Lunar Simulant—Sample 1
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Anderegg, M., 1972; 
Gold, T., 1979; Meyer C., 2010
Dukes, C., 2013; 

LHS-1 Dust:
% Weight Compound

 51.2  SiO2
  26.6                   Al2O3
12.8                      CaO
~8.9  Other

LHS-1 Sample 1



Lunar Simulant Yield Data
1.5
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• Comparison of EY curves for two LHS-
1 samples, both measured twice.

• Sample 1 has more particulates >100 
μm

• TEY/SEY/BSEY all agree within small 
uncertainties.

Single fits are shown for TEY and BSEY:
δmax = 1.58 ± 0.3 Eδ

max = 540 ± 40 eV
n = 1.264 ± 0.07 m = 0.515 ± 0.05
Eσ

1 = 100 ± 10 eV Eσ
2 = 2250 ± 200 eV 

ηpeak = 0.12 ± 0.3    Epeak = 250 ± 50 eV       
η0 = 0.08 ± 0.2       



Lunar Simulant Yield Decay Curve
1.5
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Yield Decay Curve show the evolution of TEY with 
successive charge pulses without intervening 
charge dissipation

Plot shows 100 pulse sequence with ~3.6 
pC/mm2 (~2·107 e- / mm2)

Charge density per pulse:
• USU:   ~40 fC/mm2-pulse (~3·105 e- / mm2)
• *Willis:  >1 μA continuous beam
• *Gold:   >1 μA continuous beam
• *Dukes: >10 μC/mm2-pulse  (~30MX USU)
*  No charge dissipation between pulses

Incident Charge [C/mm2]       
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Key Takeaways
• EY dust data are critical for myriad theory, simulations and engineering applications  for lunar surface 

activities
• Previous EY measurements were significantly affected by charging, layering, angularity, roughness and 

porosity
• USU granular sample preparation methods developed and validated
• Accurate and precise EY data for highly-insulating, angular, rough, porous, homogeneous Al2O3 granular 

and inhomogeneous LHS-1 lunar simulant samples at USU
• TEY/BSEY/SEY results consistent with models for materials, roughness, and coverage
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• Need to extend studies to include: 
• More homogeneous SiO2 and Al2O3 granular data for 

additional particle sizes, shapes, and coverages
• Multilayer porous dust samples
• Other types of simulants

• Clearly demonstrates we are able to acquire high quality electron yield 
and charge decay curves of lunar dust samples


